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INTRODUCTION 
 

The natural aging process is carried out by a 

progressive loss of homeostasis entailing a variety of 

physiological changes in the function of cells and 

tissues. To systematically dissect the biological aging 

process, Lopez-Otin et al. characterized nine major 

hallmarks of aging that are divided as primary 

(genomic instability, telomere attrition, epigenetic 

alterations and loss of proteostasis), antagonistic 

(deregulated nutrient-sensing, mitochondrial 

dysfunction and cellular senescence), and integrative 

hallmarks (stem cell exhaustion and altered 

intercellular communication). Due to their functional 

characteristics, primary hallmarks are considered 

causes of damage, antagonistic hallmarks are responses 

to damage while the integrative hallmarks reflect the 

end results of the first two categories [1]. The 
interconnectivity between the different hallmarks 

provides a systematic approach to evaluate 

interventions that target aging at a cellular level. 

Exercise is a lifestyle intervention with known 

antiaging effects capable of counteracting several of the 

hallmarks of aging including senescence and age-

associated inflammation [2–4]. We propose that 5’ 

adenosine monophosphate-activated protein kinase 

(AMPK) can orchestrate many of the antiaging effects 

of exercise through its regulation of diverse cellular 

pathways in the setting of energetic stress [5]. 

Activating AMPK is sufficient to extend lifespan in 

many organisms. It is naturally activated in response to 

muscle contraction and nutrient depletion, both of 

which are components of exercise [6]. Whereas most of 

the studies supporting AMPK as an antiaging strategy 

are based in animal models, the use of metformin (an 

AMPK activator) in clinical trials (TAME) as an 

antiaging drug is based on its capacity to delay heart 

disease, cancer, cognitive decline and death in people 

with diabetes [7]. These results suggest that the 

antiaging effects of AMPK are also relevant in humans, 

but the molecular mechanisms underlying these effects 

remain to be determined. 
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ABSTRACT 
 

The natural aging process is carried out by a progressive loss of homeostasis leading to a functional decline in 
cells and tissues. The accumulation of these changes stem from a multifactorial process on which both external 
(environmental and social) and internal (genetic and biological) risk factors contribute to the development of 
adult chronic diseases, including type 2 diabetes mellitus (T2D). Strategies that can slow cellular aging include 
changes in diet, lifestyle and drugs that modulate intracellular signaling. Exercise is a promising lifestyle 
intervention that has shown antiaging effects by extending lifespan and healthspan through decreasing the 
nine hallmarks of aging and age-associated inflammation. Herein, we review the effects of exercise to 
attenuate aging from a clinical to a cellular level, listing its effects upon various tissues and systems as well as 
its capacity to reverse many of the hallmarks of aging. Additionally, we suggest AMPK as a central regulator of 
the cellular effects of exercise due to its integrative effects in different tissues. These concepts are especially 
relevant in the setting of T2D, where cellular aging is accelerated and exercise can counteract these effects 
through the reviewed antiaging mechanisms. 
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Type 2 diabetes (T2D), a condition that integrates these 

concepts, is considered a disease of aging, affecting 30 

million people in the United States, most of whom are 

over the age of 50 [8]. Mortality risk is 50% higher in 

people with T2D with doubled medical costs and lost 

work and wages per year. Additionally, longevity and 

healthspan are impaired by its associated health 

complications including blindness, kidney failure, heart 

disease, stroke and amputations. 

 

From a pathophysiological point of view, accelerated 

cellular aging plays a role in T2D. Studies have shown 

that people with T2D have shorter telomeres and 

mitochondrial DNA depletion [9] and at a cellular level 

the following tissues display markers of the hallmarks 

of aging: endothelium [10, 11], collagen [12], 

pancreatic β-cells [13] and muscle [14, 15]. Many of 

these can worsen metabolic control and contribute to the 

development of cardiovascular complications. 

 

Exercise is known to be an effective lifestyle intervention 

for T2D since it improves metabolic control. However, 

to consider the effects of exercise from a cellular  

aging point of view is a conceptual change in how 

physical activity is envisioned as a therapeutic tool for 

diabetes. 

 

Herein, the antiaging effects of exercise are reviewed 

from a tissue and cellular level, its effects upon the 

individual hallmarks of aging and how AMPK can 

integrate many of these effects. Finally, these concepts 

are applied to the setting of T2D to provide a novel 

view of how this disease can be approached from a 

cellular aging perspective. 

 

Definitions and search criteria 
 

This review follows the guidelines of exercise and 

physical activity for older adults from the American 

College of Sports Medicine [16] where exercise  

is defined as planned, structured and repetitive 

movement to improve or maintain one or more 

components of physical fitness. Sedentary living is 

defined as a way of living or lifestyle that requires 

minimal physical activity and encourages inactivity 

through limited choices, disincentives and/or structural 

or financial barriers. 

 

The aim of the present review paper is to survey  

the literature related to exercise and its association  

with longevity and aging. The rationale for conducting 

this review is that aging is often accompanied by 

declining cellular homeostasis which is crucial to  
the development of chronic diseases, but lifestyle 

interventions can slow down its effects. The literature 

was surveyed on MEDLINE through freely accessible 

PubMed as a search engine for the terms: “exercise”, 

“longevity” and “aging”; the most relevant studies were 

included as they related to the 9 hallmarks of aging. 

Additional searches were performed to elucidate the 

potential role of AMPK activation upon the hallmark of 

aging. Studies from animal models, human, meta-

analysis and bibliographic reviews were consulted and 

cited accordingly. 

 

Exercise as an antiaging strategy 
 

The aging process affects longevity and health span 

which are influenced by both genetic and environmental 

factors [17]. To systematize its study, Holloszy defined 

primary and secondary aging. Primary aging refers to 

the inevitable deterioration of cellular structure and 

function, independent of disease and environment such 

as hearing and visual loss. However, secondary aging 

refers to physiological changes influenced by disease 

and environmental factors, they are not inevitable and 

can be accelerated by sedentary lifestyle or delayed by 

exercise [18]. Examples of secondary aging include 

insulin resistance, lessened skeletal mass and function, 

decline of components of the immune system and of 

cognitive function [19]. 

 

The complex relationship between factors that are 

accelerated by a sedentary lifestyle and those that are 

solely due to age, has been successfully addressed in 

various reviews [19, 20]. These studies highlight the 

importance of studying aging in physically active 

individuals, ideally in longitudinal studies across the life 

course of an individual such that the confounding effect 

of sedentary behavior in the loss of functionality during 

aging is avoided. As an example, a landmark 21-year 

longitudinal study at Stanford that followed runners and 

compared them with a sedentary group, found that those 

who exercise had a significantly lower risk of dying 

(15%) during that time frame than the sedentary group 

(34%) while also having reduced disabilities [21]. It is 

unclear whether the beneficial effects of exercise in this 

study were due to a delay in secondary aging or to 

countering of the effects of sedentarism. 

 

Regardless of this limitation, numerous studies have 

shown that maintaining a minimum quantity and quality 

of exercise improves cardiorespiratory fitness and 

muscle function, flexibility and balance [22]. Current 

guidelines recommend a minimum of 150 min/week of 

moderate intensity aerobic activity for maximum 

longevity benefits, with higher duration and intensity 

increasing cardiovascular and metabolic effects. It has 

been estimated that performing three to five times the 
recommended physical activity (450-750 min/week) 

reaches the maximal healthspan benefit that can be 

achieved with endurance exercise. Strength training 
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should be added to minimize loss of muscle mass that is 

characteristic of aging and disease [23]. 

 

The beneficial effects of exercise upon longevity and 

health span are also evident in individuals that have a 

genetically determined longevity, such as centenarians. 

In this unique population, the decline in lung function 

and sarcopenia can be counteracted by exercise 

programs which increase their physical capacity and 

health span [24]. 

 

When compared with other interventions directed  

at slowing aging, such as caloric restriction, some 

studies have shown that in mice, exercise lacks the 

adverse outcomes that were observed with time 

restricted feeding (lean mass and cardiovascular 

maladaptation) [25] and should therefore be a first line 

choice as an antiaging strategy. Additionally, it is 

currently unclear whether caloric restriction has a 

positive effect in humans. Current research is 

exploring intermittent fasting as an alternative with 

beneficial antiaging effects at a cellular level in 

animals and humans [26, 27]. 

 

The effects of exercise upon different organs and 

systems and its contribution to longevity and health 

span have been summarized in Figure 1 and Table 1. 

Cardiopulmonary 

Cardiovascular (CV) disease is a major cause of 

mortality worldwide and sedentary lifestyle highly 

contributes to CV disease burden. Cardiorespiratory 

fitness, as measured by maximal oxygen uptake (VO2 

max), is a strong and independent predictor of all-cause 

mortality [28] and improvement of CV health can be 

achieved through frequent physical activity and 

exercise. Even a generally active daily life, without 

regular exercise, is positively associated with CV health 

and longevity in older adults [29]. 

 

However, appropriate volume and intensity are essential 

to maximally benefit from exercise interventions as 

excessive exercise is counteractive [30]. Several 

publications reviewed in [31] have studied marathon 

runners as examples of strenuous and endurance 

exercise. There is general consensus that vigorous 

exercise, acutely and transiently, increases the risk of 

sudden cardiac death but only in individuals with 

underlying cardiac disease. Additionally, several studies 

have measured cardiac enzymes in runners after 

completing a marathon and have shown that a subset of 

them display elevation of cardiac enzyme creatine 

kinase, troponins and natriuretic peptides, suggesting 

myocardial injury. Elevation of these markers correlated 

with younger age, presence of cardiovascular risk 

 

 
 

Figure 1. Effects of exercise upon the aging process of different organs and systems. Created in BioRender. 
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factors, running inexperience, increased exercise 

duration and intensity as well as dehydration. 

Additionally, it has been shown that prolonged exercise 

(>2000 min/week) correlates with a higher prevalence 

of atherosclerotic plaques. However, the composition of 

these plaques was more benign with fewer mixed 

plaques and more plaques with only calcification, which 

might explain the increased longevity of endurance 

athletes even in the presence of atherosclerotic plaques 

[32]. Overall, exercise is beneficial to cardiovascular 

health, and proper training techniques that allow for the 

proper cardiac adaptations to long-term exercise, also 

named athlete’s heart, can counteract the transient 

increased CV risk linked to prolonged and strenuous 

exercise. 

 

The effect of exercise amongst the population with 

established CV events is also beneficial. After a 

myocardial infarction, exercise has been shown to 

prevent future complications, improve the quality of life 

and longevity of patients [33]. Amongst older adults 

with heart failure and preserved ejection fraction, 

exercise training is the most effective intervention to 

improve functional outcomes. In a mouse model of this 

disease, RNASeq of explanted hearts showed that 

exercise reversed age-related pathways such as those 

that correlated with cell cycle [34]. 

 

One of the mechanisms by which exercise mediates 

CV benefits is by enhancing the function of 

endothelial progenitor cells, which play a role 

repairing endothelial injuries. With age, progenitor 

cells have been shown to dysfunction; exercise 

increases expression of CXCR4 and phosphorylation 

of JAK-2 thus improving progenitor cell functional 

capacity [35]. Additionally, exercise decreases age-

associated vascular endothelial oxidative stress, 

improves vascular endothelial function [36] and 

increases hematopoietic stem cells, markers of 

neovascularization and vascular repair [37]. 

 

Muscle/bone/skin 

Loss of muscle mass is characteristic of aging and it 

starts to decline after 25-30 years of age such that by 80 

years 40% of muscle mass has been lost [38, 39]. This 

is thought to contribute to a wide array of age associated 

pathologies such as frailty, weakness, loss of function, 

metabolic syndrome, cancer, Alzheimer’s and 

Parkinson’s disease [39–41], and is believed to be 

secondary to the loss of myokines (muscle-derived 

growth factors and cytokines) that modulate systemic 

physiology. 

 

Progressive skeletal muscle wasting is known as 

sarcopenia and is characterized by a decrease in muscle 

cross-sectional area due to reduction fiber number and 

its atrophy [42]. A number of mechanisms underlying 

this process have been proposed, being correlated with 

the primary and antagonistic hallmarks of aging, 

including loss of mitochondrial density and instability 

of its DNA (mtDNA) [43]. Another aspect suspected to 

play a role is failure of adaptive responses to contractile 

activity, such as the ability to clear reactive oxygen 

species. A study using mice lacking the Cu, Zn 

superoxide dismutase showed an accelerated, age-

related loss of muscle mass and function which 

correlated to chronic exposure to increased oxidant 

activity [44]. 

 

Regular physical activity is the only efficient 

intervention to prevent and treat this age-associated 

degeneration. Aerobic endurance training improves 

peak oxygen consumption by 10-15% while resistance 

training increases muscle strength and mass. On a 

mechanistic level, exercise reduces sarcopenia by 

decreasing inflammation and increasing anabolism and 

protein synthesis [45]. Additionally, activation of 

peroxisome proliferator-activated receptor gamma 

(PGC-1α) improves muscle endurance, mitochondrial 

remodeling and enhanced balance and motor 

coordination in animal models [46]. 

 

Bone is another tissue profoundly affected by secondary 

aging. Loss of bone mass and strength characterize the 

aging process predisposing to the onset of osteoporosis 

and fractures. Exercise interventions are a long-term 

strategy to maximize bone mass and delay the onset of 

osteoporosis. These interventions need to include 

weight-bearing activities to generate bone formation 

and delay telomere shortening and modification of 

DNA methylation [47]. 

 

Skin, a component of the intertegumentary system, is 

also affected by secondary aging which deteriorates its 

structure compromising its function as a barrier, healing 

and making it prone to disease. Endurance exercise 

attenuates age-associated changes to skin in humans and 

mice partly through IL15, which acts as a regulator of 

mitochondrial function in aging skin. Upregulation of 

IL15 is thought to occur through activation of muscle 

AMPK, a central regulator of metabolism, therefore the 

elimination of muscle AMPK causes a deterioration of 

skin structure [48]. 

 

Peripheral and central nervous systems 
Chronological aging is associated with a decline in 

cognitive, memory and executive functions as well as a 

decline in peripheral nervous system such as 

neuromuscular junctions. Some of these changes are 

thought to be due to primary aging and are therefore not 

amenable to interventions; however, a subset of age-

related changes is thought to be due to secondary aging 
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Table 1. Effects of exercise on human and animal models of aging. 

Variable (organ or system) Observation References 

Longevity and healthspan • Decreased risk of death [21, 22] 

Cardiopulmonary • Improved maximal oxygen uptake (↑VO2 max) 

• Improved atherosclerotic plaque composition (calcification 

only) 

• Prevention of post-MI complications 

• Improved functional outcome in patients with heart failure 

with preserved ejection fraction 

• Improved progenitor cell functional capacity 

• Decreased endothelial oxidative stress, improves vascular 

endothelial function 

• Increased hematopoietic stem cells 

[28, 32–37] 

Muscle/bone/skin • Prevention of age-associated muscle degeneration 

• Reduced physical disability 

• Reduced sarcopenia 

• Improved muscle endurance 

• Enhanced balance and motor coordination 

• Improved skin structure 

• Increased bone formation, decrease osteoporosis 

[45, 47, 48] 

Peripheral and central 

nervous systems 

• Improved executive function and memory 

• Prevention of Alzheimer disease and other 

neurodegenerative diseases 

• Improved neurogenesis, neurotrophins, growth factors and 

synaptic markers 

• Decreased inflammation 

• Restoration of retinal ganglion cells 

• Preservation of neuromuscular junctions 

• Relaxation, decreased anxiety and depression 

[49–58] 

Metabolism and glucose 

control 

• Decrease peripheral insulin resistance 

• Decreased insulin secretion 

• Increased glucagon, gluconeogenesis and fatty acid 

metabolism 

• Decreased A1c 

• Increased insulin-independent glucose uptake 

Reviewed in [62] 

 

and therefore is influenced by sedentary lifestyle and 

exercise. 

 

High levels of exercise have been associated with better 

executive function and memory in cross-sectional and 

longitudinal analyses [49]. In fact, regular physical 

activity is one of the few interventions capable of 

preventing Alzheimer’s disease and other age-

associated neurodegenerative disorders [50]. This 

benefit relates to exercise’s ability to increase the 

endurance of cells and tissues to oxidative stress, and to 

increase vascularization, energy metabolism and 
neurotrophin synthesis, all of which play a role in 

neurogenesis, memory and brain plasticity. Additional 

mechanisms of exercise action on the central nervous 

system are increased neurotrophins, growth factors and 

synaptic markers coupled with a reduction in 

inflammation [51–55]. 

 

Retinal ganglion cells (RGCs) which become vulnerable 

to injury with advancing age with resultant impaired 

vision, are also restored by exercise in mice. This is due 

to sustained levels of brain-derived neurotrophic factor 

(BDNF) levels in the retina underscoring the role of this 

critical factor in maintaining retinal health during aging 

of animal models [56]. 

 

Within the peripheral nervous system, neuromuscular 
junctions modify their structure with age. These 

changes are characterized by axonal swellings, 

sprouting, synaptic detachment, partial or complete 

withdrawal of axons from some postsynaptic sites and 



www.aging-us.com 6 AGING 

fragmentation of the postsynaptic specialization. 

However, one month of voluntary exercise in 22-mo-old 

mice reversed age-related synaptic changes with no 

change on motor neuron number or muscle fiber 

turnover [57]. 

 

Additionally, the psychological effects of exercise are 

profound and include relaxation and alleviation of 

anxiety and depression. These effects are strong 

enough that exercise can turn into an addiction [58]. 

Given its effectiveness and safety, it should be 

considered a first line of choice to treat many 

psychological ailments among the elderly, including 

insomnia. 

 

Metabolism and glucose control 

Secondary aging is associated with the development of 

insulin resistance, increased adiposity, and 

accumulation of ectopic lipid deposits in tissues and 

organs; all of which contribute to metabolic dysfunction 

[59] increasing the risk of T2D. 

 

Several metabolic alterations accumulate over time 

along with a reduction in physical fitness, suggesting 

the existence of a "metabolic clock" that influences 

aging. The main features of the "westernized" lifestyle 

(hypercaloric nutrition and sedentary behavior) 

accelerate the metabolic decline of secondary aging 

factors, such as insulin resistance, while the 

promotion of metabolic fitness leads to health span 

extension [60]. 

 

The beneficial effects of exercise upon glucose 

metabolism are well known and have been thoroughly 

studied [61], converting increase physical activity in 

one of the pillars of the treatment of T2D. The human 

body reacts to an acute bout of exercise by decreasing 

insulin secretion and increasing circulating glucagon, 

leading to improved insulin sensitivity and decreased 

glycosylated hemoglobin [62]. However, exercise as 

an antiaging strategy in the context of T2D is novel 

and could add to its known beneficial metabolic 

effects. 

 

In summary, exercise has shown to have beneficial 

antiaging effects of many human organs and tissues 

either by reversing some of the aging phenotypes or by 

delaying their appearance (Figure 1 and Table 1). 

 

Signaling pathways through which exercise 

mediates anti-aging effects 
 

The consequences of exercise on the aging of specific 

organs and tissues can be studied at a cellular 

perspective and structured based on the changes it has 

upon the hallmarks of aging. 

Primary hallmarks 

Genomic instability 

Age is characterized by the accumulation of lesions in 

the DNA and defects in the nuclear architecture leading 

to genomic instability. These are the result of 

exogenous (physical, chemical and biological agents) 

and endogenous factors (DNA replication errors, 

spontaneous hydrolytic reactions and reactive oxygen 

species) [63] that result in mutations, translocations, 

chromosomal gain and losses, telomere shortening and 

gene disruption. 

 

Exercise minimizes these lesions, partly through: 

reduction of the age-associated 8-hydroxy-2'-

deoxyguanosine (8-OHdG) [64], increased activity of 

DNA repair, resistance to oxidative stress in proteins, 

and nuclear factor kappa B (NF-kB) and PGC-1α 

signaling [64–66]. 

 

Telomere attrition 

Telomeres protect the integrity of chromosomal DNA 

during cellular division but are particularly susceptible 

to age-related deterioration [67]. Studies have 

demonstrated a direct correlation between telomere 

length and life expectancy, stress, DNA damage and 

onset of age-related diseases. Various genetic and 

environmental factors, such as diet, physical activity, 

obesity and stress, are known to influence health and 

longevity as well as telomere dynamics. 

 

Exercise is able to increase telomere length through 

changes in telomerase activity, inflammation, oxidative 

stress and skeletal muscle satellite cell content. Long-

term exercise can activate telomerase reverse 

transcriptase (TERT) in leukocytes and also upregulate 

protective and DNA repair regulator proteins (such as 

telomeric repeat-binding factor 2 and Ku protein). This 

has important physiological consequences since a 

positive correlation has been shown between muscle 

regeneration processes and telomere length in older 

adults [68]. 

 

Epigenetic alterations 

Exercise is capable of inducing widespread epigenetic 

changes. General loss of histones, imbalanced histone 

modifications, transcriptional deregulations, changes in 

heterochromatin, breakdown of nuclear lamina, as well 

as DNA and histone methylation, are characteristics of 

aging [69]. 

 

Physical activity increases DNA methylation, causes 

histone modifications and induces miRNA in muscle, 

brain and the cardiovascular system. Acute aerobic 

exercise decreases methylation of PGC-1α, 

mitochondrial transcription factor (TFAM), MEF2A, 

citrate synthase (CS) and pyruvate hydrogenase kinase 
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isozyme (PDK4) [70]. In addition, aerobic-induced 

SIRT-1 downregulates p53, PGC-1α and NF-kB via its 

deacetylase activity [71, 72]. Chronic moderate aerobic 

exercise reduces inflammation through a decrease of 

pro-inflammatory cytokines (IL-1b and IL18) that is 

mediated by methylation of pro-inflammatory 

apoptosis-associated speck-like protein caspase (ASC) 

gene [73]. 

 

Loss of proteostasis 

Some age-related diseases are linked to impaired 

protein homeostasis – known as proteostasis. Cell 

autophagy is one of the mechanisms for degradation and 

recycling of damaged macromolecules and organelles, 

and its alteration can lead to disease. Although human 

data are still scarce, muscle autophagy markers are up-

regulated after exercise training in older women [74] 

and could underlie the promotion of health span and 

longevity. 

 

The target of rapamycin complex 1 (TORC1) - a central 

kinase involved in protein translation- is a negative 

regulator of autophagy and so may be an effector of 

exercise. TORC-1 is downregulated by exercise through 

modulation of IGF-1, Akt/mTOR, and Akt/FoxO3a 

signaling. This cascade has been shown to prevent loss 

of muscle mass and strength [75, 76]. Additionally, the 

protective effect of chronic exercise on diabetes-

induced muscle atrophy is partly due to decreased 

muscle autophagy [77]. 

 

Antagonistic hallmarks 

Deregulated nutrient-sensing 

Deregulation of nutrient sensing pathways have been 

extensively involved in age-related phenotypes, and 

their downregulation is one of the most effective 

strategies to extend lifespan and health span. As humans 

age, the loss of muscle mass occurs due to acute 

changes in net protein balance, particularly in the 

myofibrillar protein fraction [78, 79], and exercise 

regulates the nutrient sensing pathways. 

 

Insulin like growth factor (IGF-1) acts as a key link 

between mechanical contraction and protein synthesis 

since it is acutely stimulated and promotes ribosomal 

biogenesis and translation to form new myofibril proteins. 

During exercise the mechanical loading and contraction 

cause the local release of IGF1 which activates IGF and 

leads to to muscle protein synthesis [80]. 

 

Another exercise-regulated nutrient sensing pathway is 

AMPK, which is activated in response to decreased 

intracellular ATP and changes in the NAD+/NADH 

ratio. Its function is to preserve ATP by inhibiting  

both biosynthetic and anabolic pathways while 

simultaneously stimulating catabolic pathways to re-

establish cellular energy stores. The increased 

concentration of Ca2+ during muscle contraction can 

also directly activate AMPK and is implicated in the 

regulation of numerous intracellular proteins that 

mediate cellular transduction, including kinase C, 

calcineurin, and CaMKs [81–83]. Both AMPK and 

CaMKII lead to PGC-1α activation, a member of a 

family of transcriptional coactivators that regulate 

mitochondrial biogenesis [84] (Figure 2). 

 

Oxidative stress is yet another mechanism through 

which exercise can regulate nutrient sensing by 

producing sestrins and activating the MAPK cascade 

[85], a family of intracellular signaling that include the 

extracellular signal regulated kinase 1 and 2 (ERK1/2), 

the c-Jun NH2- terminal kinase (JNK) and p38 [86]. 

Activation of this pathway leads to the inhibition 

mTOR complex 1 (mTORC1) [87] and activation of 

PGC-1α [88]. 

 

Mitochondrial dysfunction 

The accumulation of mitochondrial damage due to 

ROS generated from the electron transport chain is the 

base of the mitochondrial theory of aging first 

proposed by Harman [89]. It postulates that the 

oxidative damage to mtDNA affects cellular 

replication and transcription, altering the functionality 

of mitochondrial proteins. 

 

It has been known for a long time that exercise 

increases mitochondrial content in skeletal muscle [90]. 

Additionally, it can attenuate mitochondrial 

dysfunction through recovery of oxidative capacity and 

the activity of electron transport chain protein 

complexes [90, 91]. In agreement with this, endurance 

athletes showed absence of age-related decline in 

mitochondrial oxidative capacity and elevated 

expression of mitochondrial proteins, mtDNA and 

mitochondrial transcription factors [92]. In mtDNA 

mutator mice, which exhibit an accelerated aging 

phenotype, a 5-month aerobic exercise program 

promoted systemic mitochondrial biogenesis, prevented 

mtDNA depletion and mutations, increased 

mitochondrial oxidative capacity and respiratory chain 

assembly. These changes restored mitochondrial 

morphology and blunted pathological levels of 

apoptosis in multiple tissues [93]. 

 

Regular exercise has a profound beneficial effect on 

human mitochondrial function and biogenesis, partly 

mediated by PGC-1α upregulation. Phosphorylation of 

PGC-1α drives the production of fibronectin type III 

domain-containing protein 5 (FNDC5), followed by its 

cleavage to generate irisin [94–96], which can be 

secreted, activated and transported to multiple tissues to 

exert its beneficial effects. 
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Cellular senescence 

Cellular senescence is characterized by lack of cellular 

proliferation in response to stressors and secretion of an 

array of proteins specific to each cell type. This array of 

proteins known as senescence-associated secretory 

phenotype (SASP) is part of the aging hallmark of 

altered intercellular communication. 

 

Cellular senescence is linked to other mechanisms of 

aging. ROS accumulation in mitochondria leads to 

single-strand DNA breaks that accumulate in telomere 

regions and result in telomere shortening and premature 

cellular senescence. Senescence has been linked to 

numerous age-related chronic diseases and risk factors, 

such as T2D [13, 97, 98]. Exercise enhances telomere 

length and reduces the expression of apoptosis 

regulators (such as cell cycle checkpoint kinase 2, 

p16INK4a, and P53) shedding light on the beneficial 

impact of exercise on senescence [68]. 

Expression of p16INK4a, a marker and effector of 

senescence, in cellular fractions of human whole blood 

exponentially increased with chronological age and 

associated significantly with sedentary life style [99]. In 

addition, p16INK4a expression correlated with plasma 

interleukin-6 (IL-6) concentration, a marker of human 

frailty. Exercise induces increased IL-6 derived from 

muscle which has anti-inflammatory properties, 

whereas paradoxically, IL-6 resulting from TNF or 

NFkB activation relates to aging phenotypes [100]. In a 

senescence rat model, exercise suppresses senescence 

markers and down-regulates inflammatory mediators by 

reducing gamma glutamyltranspeptidase activity and 

levels of p53, p21, and IL-6 [101]. 

 

In some settings, exercise-induced senescence is 

beneficial, such as the appearance of fibro-adipogenic 

progenitors in response to muscle damage, and leads to 

regenerative inflammation [102]. 

 

 
 

Figure 2. AMPK as an effector node on the effects of exercise upon the different hallmarks of aging. AMP, adenosine 

monophosphate; AMPK, AMP- activated protein kinase; ATP, adenosine triphosphate; AGEs, advanced glycation end-products; FoxO3, 
Forkhead Box O3; LKB1, Liver kinase B1; mTOR, mammalian target of rapamycin; mTORC1, mTOR complex 1; NAD+, Nicotinamide adenine 
dinucleotide; NADH, Reduced Nicotinamide adenine dinucleotide; NFkB, Nuclear Factor kappa-light-chain-enhancer of activated B cells; 
NRF2, Nuclear factor erythroid 2-Related Factor 2; p53, Tumor suppressor protein 53; PGC-1, peroxisome proliferator-activated receptor 
gamma; SIRT1, Silent information regulator. Created in BioRender. 
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Integrative hallmarks 

Stem cell exhaustion 

A decline in the regenerative potential of tissues is 

expected with age. Specifically, a decline in satellite cells 

results in impaired repair of muscle fibers while decreased 

hematopoietic stem cells leads to immunosenescence 

[103–105]. Exercise is one of the most potent stimuli for 

the migration of stem cell subsets from their home tissue 

to impaired ones for later regeneration. It increases the 

number and differentiation of satellite cells type II fibers 

[106]. In addition, exercise activates pluripotent cell 

progenitors in several tissues, including mesenchymal and 

neural stem cells leading to improved brain regenerative 

capacity and cognitive ability [107]. 

 

Altered intercellular communication 

Pro-inflammatory tissue, damage accumulation, 

cumulative dysfunction of the immune system and 

elevated levels of pro-inflammatory cytokines secretion 

underlie the development of inflammaging, a pro-

inflammatory phenotype associated with progressive 

aging that affects intercellular communication [108]. 

This is characterized by the activation of the NOD-like 

receptor protein 3 (NLRP3) and elevation of IL-1b, 

tumor necrosis factor-a (TNF-α) and interferons [108, 

109]. Exercise downregulates this inflammatory 

response through AUF1 [110], a decay factor 

implicated in maintenance of telomere length by TERT 

modulation [111]. 

 

Moreover, exercise further suppresses inflammation via 

IL-6 released from muscle [112]. Recent studies support 

the notion that IL-6 can activate pathways that have 

insulin-sensitizing effects [113, 114] by activating 

AMPK in skeletal muscle, leading to increased glucose 

uptake and translocation of the glucose transporter 

GLUT4 from intracellular compartments to the plasma 

membrane [115]. Chronic moderate exercise increases 

methylation levels of the pro-inflammatory apoptosis-

associated speck-like protein caspase (ASC) gene that 

controls secretion of IL-1β and IL-18 in leukocytes 

[73]. Exercise also controls age-related increases of  

pro-inflammatory cytokines thereby preventing 

accumulation of misfolded proteins [1, 116]. 

 

In summary, exercise attenuates all hallmarks of aging 

through different molecular pathways and effectors that 

seem independent and disconnected. We hypothesize 

there must be molecular regulatory nodes able to 

coordinate these responses and that AMPK can play 

such a role. 

 

AMPK as a central regulator 
 

We propose that activation of AMPK plays a 

significant integrative role impacting the primary, 

secondary and integrative hallmarks of aging in 

response to exercise. In muscle, AMPK is a long 

known exercise effector that is activated by increased 

AMP/ATP and NAD+/NADH ratio [117]. Mammalian 

AMPK is a heterotrimeric complex with α, β, and γ 

subunits. Mechanistically, AMP interacts with 

AMPK’s γ subunit, facilitating activation of the α 

subunit by upstream regulatory kinases such as LKB1. 

In parallel, the increase in NAD+/NADH causes 

activation of silent information regulator 1 (SIRT1) 

deacetylase activating LKB1. 

 

Thus cellular energy balance effectively controls 

cellular responses via an integrated signaling network 

mediated by AMPK [118], which phosphorylates its 

downstream targets and is able to attenuate the 

hallmarks of aging [119, 120] (Figure 2). Below is a list 

of the main effectors of AMPK and their actions upon 

the hallmarks of aging. 

 

PGC-1α 

PGC-1α is a critical regulator of gene transcription that 

controls energy homeostasis and is involved in 

mitochondrial biology [121]. In mouse skeletal muscle 

cells, PGC-1α mediates the conversion of IIb fibers into 

mitochondria-rich type IIa and I fibers [122]. Although 

PGC-1α mediated conversion has not been directly 

shown across species, type IIa fibers in humans have the 

highest concentration of PGC-1a [123, 124], which 

could support a parallel mechanism. In addition, PGC-

1α activation by AMPK has shown to act as a regulator 

of human telomere transcription via telomeric repeat-

containing RNA (TERRA), important for telomere 

integrity [125]. 

 

Some of the effects of PGC-1α are mediated through its 

inhibition of NFκB. Ablation of PGC-1α led to 

activation of NFκB and upregulated pro-inflammatory 

cytokines [126] while increased expression of PGC-1α 

inhibited NFκB signaling in aortic smooth muscle and 

endothelial cells [127]. These observations suggest that 

AMPK controls NFκB activation and that deficiency of 

AMPK signaling during aging disturbs energy 

metabolism and enhances inflammation (Figure 2). 

 

Nuclear factor erythroid 2-related factor 2 (Nrf2) 
Nrf2 is a basic leucine zipper protein involved in 

regulation of antioxidant proteins that protect against 

oxidative damage triggered by injury and inflammation. 

Studies using AICAR (an AMP analog and AMPK 

activator) showed stimulated expression of Nrf2 and 

upregulation of glutathione peroxidase 7 (Gpx7), 

leading to suppression of cellular senescence and SASP 

[128]. In addition, activation of Gpx7 via Nrf2 delayed 

cellular attrition related to stem cell aging [128, 129] 

(Figure 2). 
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Crosstalk between AMPK activated signaling pathways 

is demonstrated by inhibition of Nrf2 by the p65 

component of NFκB complex through kelch-like ECH-

associated protein 1 (Keap1). This crosstalk can have an 

additive effect upon decreased cellular senescence and 

stem cell maintenance (Figure 2). 

 

FoxO3a 

Activation of the FoxO3a axis by AMPK increased stress 

resistance in long-lived animals [118]. By mediating 

epigenetic and transcriptional changes, FoxO3, a member 

of the FOXO subfamily of forkhead transcription factors, 

is able to mediate the effects of therapeutic interventions 

on age-related diseases and promote healthy aging [120]. 

Target genes of the AMPK-FoxO3 pathway include 

uncoupling protein UCP2 and GAD45a, which are 

involved in defense against oxidative stress and DNA 

damage leading to longevity [130] (Figure 2). 

 

P53 
Tumor protein P53 regulates the cell cycle and functions 

as a tumor suppressor. The effects of exercise-activated 

AMPK upon P53 are complex, with both activating and 

inhibiting effects. AMPK activation has been shown to 

induce phosphorylation of P53 and lead to cell cycle 

arrest. This promotes cellular survival in response to 

glucose deprivation (as might occur during exercise), 

however these cells can rapidly reenter the cell cycle upon 

glucose restoration. However, persistent activation of 

AMPK leads to accelerated P53-dependent cellular 

senescence, underscoring the importance of the timing 

and pulsatility of AMPK activation [131]. Interestingly, 

acute exercise has also been shown to decrease nuclear 

P53 directly or through upregulation of Nrf2 leading to 

inactivation of P53-P21Cip1 and P16INK4a-RB signaling 

pathways [118, 132]. Due to these varied effects in vitro, 

it has been difficult to elucidate the in vivo functional role 

of P53 during aging. It is likely that the response partly 

depends on its cellular localization as well as the duration 

and intensity of the stimulus. 

 

FoxO and P53 

When activated simultaneously by AMPK, P53 and 

FoxO can induce the expression of sestrins, a family of 

highly conserved stress-response proteins with 

oxidoreductase activity that can protect cells from 

oxidative stress. Loss of sestrins has been linked to age 

related pathologies such as mitochondrial dysfunction, 

muscle degeneration and lipid accumulation. These 

effects are attributed to increased TOR activity and the 

associated decrease in autophagic uptake (Figure 2). 

These pathologies were prevented by the activation of 

AMPK by AICAR and the inhibition of TOR by 

rapamycin [133]. Thus, sestrins are suggested as part of 

a negative feedback loop through mTOR signaling that 

operates via the activation of AMPK [118]. 

mTOR 

Serine/threonine protein kinase mTOR was identified in 

mammalian cells as a target of the antiproliferative 

molecule rapamycin [134]. It participates in the 

formation of two protein complexes called mTORC1 

and mTORC2, known be sensitive and insensitive to 

rapamycin, respectively [135]. Phosphorylation and 

activation of AMPK leads to inhibition of mTORC1 

through v-ATP-ase-AXIN/LKB1, which leads to 

increased lifespan in C. elegans [136]. 

 

Whereas autophagy declines during aging, AMPK 

activation can restore it by inducing the dissociation of 

mTORC1 from the ULK1 complex, directly binding 

and phosphorylating ULK1, an autophagy-initiating 

kinase, with the result of stimulating autophagy. [137]. 

Furthermore, the direct inhibition of mTORC1 by 

AMPK can have effects similar to nutrient depletion 

[120] (Figure 2). 

 

Autophagy and protein synthesis inhibition mediated by 

downregulation of mTOR have direct effects on 

proteostasis. In a mouse model of Parkinson’s disease, 

AMPK activation reversed behavioral impairments, 

reduced α-synuclein accumulation and enhanced LC3-

II-mediated autophagy in dopaminergic neurons [138, 

139]. AMPK-activation has also been shown to rescue 

misfolding and trafficking of rhodopsin, highlighting 

the AMPK role against impairment in proteostasis [140] 

(Figure 2). 

 

Advanced glycation end products (AGEs) 

AMPK-activation can also exert antiaging effects 

through inhibiting the effects of AGEs [141]. AGEs, 

major inflammatory mediators in macrophages, affect 

the progression of age-related atherosclerosis and 

diabetes and inhibit AMPK activity through allosteric 

competitive binding to its AMP-binding site in the γ 

subunit [142]. However, AMPK activation inhibits 

AGEs-induced inflammatory response in murine 

macrophages [143]. These findings show bidirectional 

modulation between these two pathways that can be 

shifted through environmental factors to enhance 

protective mechanisms against genotoxic stress. 

 

In summary, AMPK activation through exercise can 

impact all the hallmarks of aging through different 

signaling pathways as summarized in Figure 2 and can 

act as a signaling node capable of orchestrating many of 

the effects of exercise on the health span of different 

tissues and organs. 

 

Effects of exercise on cellular aging in T2D 
 

T2D is a complex disorder that combines a genetic 

hereditary component and environmental risk factors, 
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such as nutrition and lifestyle. Amongst the risk factors, 

age stands out with most patients being over 60 years 

old. There is evidence of accelerated cellular aging with 

hyperglycemia and in both Type 1 (T1D) and Type 2 

(T2D) diabetes mellitus [11, 144]. 

 

Hyperglycemia increases the hallmarks of aging, such as 

senescence of endothelial cells in atherosclerotic lesions 

and telomere shortening [10]. The exposure of endothelial 

progenitor cells to high glucose concentrations increased 

cellular senescence in aortas of a streptozotocin-induced 

diabetes model [11], strengthening the association among 

hyperglycemia, diabetes and senescence [10]. 

Additionally, increased mitochondrial DNA depletion and 

increased aging of collagen have also been reported in 

patients with T2D [9, 12]. 

 

Pancreatic β-cells, which play a crucial role in the 

development of T2D, have also been shown to undergo 

cellular senescence in the setting of insulin resistance 

[145], T2D and high body mass index (BMI). Senolysis 

(the specific removal of senescence cells either 

pharmacologically or through transgenic models) 

improved insulin secretion, blood glucose levels and the 

gene identity of the remaining β-cell population [13]. 

Muscle is another tissue impacted by accelerated aging 

during diabetes as evidenced by accelerated loss of 

strength and mitochondrial dysfunction in T1D [14, 15]. 

Skin biopsies obtained from subjects of different ages 

demonstrated that the onset of cellular senescence 

occurred earlier in people with juvenile diabetes and in 

subjects genetically predisposed to diabetes [144]. 

Additionally, premature senescence has been observed 

in endothelial colony-forming cells in the cord blood of 

infants from mothers with diabetes [146]. These data 

suggest T2D as a disease where cellular aging is 

accelerated, and therefore is a pathology in need of 

strategies that can broadly impact aging at the molecular 

level. 

 

Exercise and physical activity are already cornerstones 

in the metabolic management of T2D [147]. 

Randomized trials have shown that lifestyle 

interventions including 150 minute of physical activity 

per week, combined with diet-induced weight loss, 

reduced the risk of T2D by 58% in an at-risk population 

[148, 149]. Increasing physical activity in adults with 

T2D resulted in complete remission of the disease in 

11.5% of subjects within the first year of intervention 

and an additional 7% had partial or complete remission 

of type 2 diabetes after 4 years [150]. 

 

The benefits are mainly related to exercise improving 

blood glucose levels through both a reduction of 

peripheral insulin resistance [151–153] and its capacity  

to induce insulin-independent glucose uptake [154]. 

Depending on whether the exercise is acute or chronic, 

the activated pathways in muscle are different (Figure 3). 

 

 
 

Figure 3. Exercise activated pathways in muscle capable of contributing to improved metabolic control in T2D. AMP, 
adenosine monophosphate; AMPK, AMP- activated protein kinase; ATP, adenosine triphosphate; Ca2+, divalent cation calcium; CaMKs, 
calcium/calmodulin dependent protein kinases; GLUT4, glucose transporter type 4; LKB1, liver kinase B1; PGC-1, peroxisome proliferator-
activated receptor gamma; ROS, reactive oxygen species. Created in BioRender. 
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Acute exercise is able to promote translocation of 

GLUT4 to the plasma membrane through at least two 

signaling pathways, one involves AMPK and the second 

an increase of intracellular Ca2+. Muscle cell contraction 

is ATP-dependent and an acute exercise bout increases 

AMP levels, activating the AMPK signaling pathway 

and leading the fusion of GLUT-4 containing vesicles 

with the plasma membrane [155, 156] (Figure 3). 

 

Muscle contraction increases ROS generation due to 

high oxygen consumption that takes place during 

mitochondrial activity, in fact, superoxide generation in 

skeletal muscle increases about 50-100-fold during 

exercise [157, 158]. ROS have been reported to inhibit 

plasma membrane Ca2+ATPase activity indirectly by 

formation of reactive aldehydes. Hence, ROS would 

hinder Ca2+ removal from the cell and encourage 

intracellular Ca+2 accumulation. Muscle contraction can 

also directly increase intracellular Ca2+, which promotes 

the membrane translocation of GLUT-4 [81]. 

 

Chronic exercise increases the number and activity of 

mitochondria in muscle [159], which counteracts the 

reported decrease in size, function and integrity of 

mitochondria in people with T2D [160], and decreases 

the expression of PGC-1α, a marker of mitochondrial 

biogenesis [161]. Furthermore, skeletal muscle 

mitochondrial dysfunction has been linked with insulin 

resistance and can have implications on inflammation, 

senescence, autophagy and retrograde nuclear 

signaling [162]. 

 

In summary, exercise activates molecular signals that 

can bypass defects in insulin signaling in skeletal 

muscle and increase skeletal muscle mitochondria, 

which are associated with improved insulin sensitivity 

in skeletal muscle and therefore improve aging-

associated effects of T2D. 

 

Summary, perspective and limitations 
 

Exercise is an effective strategy to prevent aging and 

enhance longevity and health span both on a clinical 

and a cellular level due to its capacity to modulate all 

nine hallmarks of aging. Additionally muscle, one of the 

main systemic effectors of exercise, is recognized as an 

endocrine organ that produces and releases myokines, 

implying a complex cross talk between muscles and 

other tissues. The AMPK pathway (Figure 2), a well-

known mediator of exercise effects in muscle could be 

activated in different tissues and drive many of the 

health-promoting and lifespan-extending capabilities of 

exercise. We propose that it is a central effector node 

able to impact the hallmarks of aging and integrate the 

effects of exercise on many tissues. T2D, a disease in 

which cellular aging is accelerated in several tissues, is 

an ideal candidate to further understand the antiaging 

effects of exercise (Figure 4). 

 

 
 

Figure 4. Conceptual overview. Created in BioRender. 
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This review has several limitations. As mentioned, the 

lack of deleterious effects of a sedentary lifestyle 

upon aging during exercise can sometimes be 

confused with antiaging effects of exercise. This 

conundrum can only be solved if aging studies are 

carried out in non-sedentary older populations. 

Unfortunately this rarely occurs and should be 

considered while interpreting the cited studies. 

Another limitation is the cross-sectional design of 

studies comparing an exercised and a sedentary 

population in spite of the knowledge that the rate of 

aging varies considerably amongst individuals. The 

ideal design for aging studies is a longitudinal follow 

up of non-sedentary individuals; this is rarely feasible 

due to constraints of time and resources. 

 

Although every attempt was made to include the most 

relevant studies for each subject, the vastness of 

publications in this area means that some important 

work may have been unintentionally omitted. We 

encourage readers to further their searches on specific 

subjects that have specially interested them. 

 

We propose that future studies should address the 

effects of exercise on tissues which are not considered 

its direct targets but do show accelerated aging in T2D, 

such as pancreatic β-cells. In these, the role of AMPK 

and its physiological control will become especially 

significant as exercise is considered a cellular antiaging 

strategy. 
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